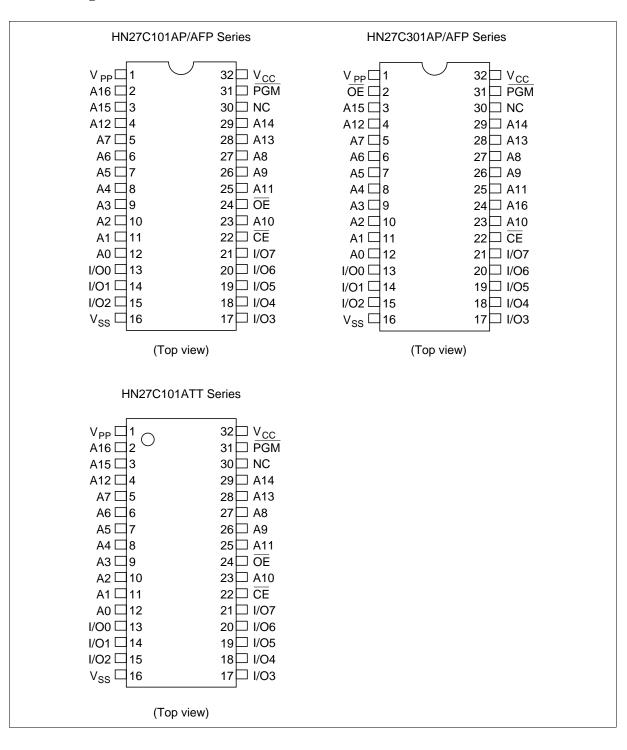
131072-word × 8-bit CMOS One Time Electrically Programmable ROM

HITACHI

Description

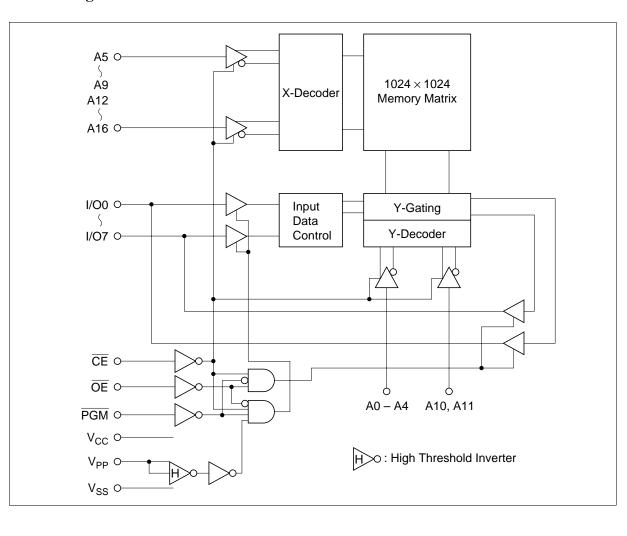
The HN27C101AP/AFP/ATT series are 131072-word × 8-bit one time electrically programmable ROM. Initially, all bits of the HN27C101AP/AFP/ATT, HN27C301AP /AFP series are in the "1" state (output high). Data is introduced by selectively programming "0" into the desired bit location. This device is packaged in 32-pin plastic package, therefore, this device cannot be rewritten and erased. The packages of the HN27C101ATT series are surface mount thin and small outline packages. They are suitable for hand-held equipment such as a memory card.


Features

- Single power supply: $+5 \text{ V} \pm 10\%$
- Fast high-reliability programming mode and fast high-reliability page programming mode
 - Programming voltage: +12.5 V DC
 - Fast high-reliability page programming: 14 sec typ
- High speed inputs and outputs TTL compatible during both read and program modes
- Low power dissipation: 50 mW/MHz typ (active)
 - 5 μW typ (standby)
- Pin arrangement: 32-pin JEDEC standard except HN27C301A series replaceable 32 pin Mask ROM (HN27C301AP/AFP Series)
- Package
 - Surface mount thin and small outline package (TSOP) type II: HN27C101ATT series
- Device identifier mode: manufacturer code and device code
- Fully compatible with HN27C101P/FP, 301P/FP series

Ordering Information

Type No.	Access Time	Package
HN27C101AP-12	120 ns	600-mil 32-pin plastic DIP (DP-32)
HN27C101AP-15	150 ns	
HN27C101AP-20	200 ns	
HN27C101AP-25	250 ns	
HN27C301AP-12	120 ns	
HN27C301AP-15	150 ns	
HN27C301AP-20	200 ns	
HN27C301AP-25	250 ns	
HN27C101AFP-12	120 ns	32-pin plastic SOP (FP-32D)
HN27C101AFP-15	150 ns	
HN27C101AFP-20	200 ns	
HN27C101AFP-25	250 ns	
HN27C301AFP-12	120 ns	
HN27C301AFP-15	150 ns	
HN27C301AFP-20	200 ns	
HN27C301AFP-25	250 ns	
HN27C101ATT-12	120 ns	32-pin plastic TSOP-(II) (TTP-32D)
HN27C101ATT-15	150ns	


Pin Arrangement

Pin Description

Pin Name	Function
A0 – A16	Address
I/O0 – I/O7	Input/output
CE	Chip enable
ŌĒ	Output enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{SS}	Ground
PGM	Programming enable
NC	No connection

Block Diagram

Mode Selection

Mode	CE	OE	PGM	A9	V_{PP}	V_{cc}	I/O
HN27C101A	(22)	(24)	(31)	(26)	(1)	(32)	(13 – 15, 17 – 21)
HN27C301A	(22)	(2)	(31)	(26)	(1)	(32)	(13 – 15, 17 – 21)
Read	V_{IL}	V_{IL}	V_{IH}	Х	V _{cc}	V _{cc}	Dout
Output disable	V _{IL}	V _{IH}	V _{IH}	Х	V _{cc}	V _{cc}	High-Z
Standby	V _{IH}	Х	Х	Х	V _{cc}	V _{cc}	High-Z
Program	V _{IL}	V _{IH}	V _{IL}	Х	V _{PP}	V _{cc}	Din
Program verify	V_{IL}	V_{IL}	V_{IH}	Χ	V_{PP}	V_{cc}	Dout
Page data latch	V _{IH}	V _{IL}	V _{IH}	Х	V _{PP}	V _{cc}	Din
Page program	V _{IH}	V _{IH}	V _{IL}	Х	V _{PP}	V _{cc}	High-Z
Program inhibit	V_{IL}	V_{IL}	V_{IL}	Х	V_{PP}	V_{cc}	High-Z
	V _{IL}	V_{IH}	V_{IH}				
	V _{IH}	V_{IL}	V_{IL}				
	V _{IH}	V _{IH}	V _{IH}	·			
Identifier	V _{IL}	V _{IL}	V _{IH}	V _H	V _{cc}	V _{cc}	Code

Notes: 1. X: Don't care

2. V_H : 12.0 V \pm 0.5 V

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
A11 input and output voltages*1	Vin, Vout	-0.6*2 to +7.0	V
A9 input voltage*1	V _{ID}	-0.6*2 to +13.5	V
V _{PP} voltage*1	V _{PP}	-0.6 to +13.5	V
V _{cc} voltage*1	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range	Tstg	-55 to +125	°C
Storage temperature range under bias	Tbias	-10 to +80	°C

Notes: 1. Relative to V_{ss}

2. Vin, Vout and V_{ID} min = -1.0 V for pulse width \leq 50 ns

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	_	10	pF	Vin = 0 V
Output capacitance	Cout	_	_	15	pF	Vout = 0 V

Read Operation

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{CC}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{CC}
Output leakage current	I _{LO}	_	_	2	μΑ	Vout = 0 V to V _{CC}
V _{PP} current	I _{PP1}	_	1	20	μΑ	V _{PP} = 5.5 V
Standby V _{cc} current	I _{SB1}	_	_	1	mA	CE = V _{IH}
	I _{SB2}	_	1	20	mA	$\overline{\text{CE}} = V_{\text{cc}} \pm 0.3 \text{ V}$
Operating V _{cc} current	I _{CC1}	_	_	30	mA	CE = V _{IL} , lout = 0 mA
	I _{CC2}	_	_	30	mA	f = 5 MHz, lout = 0 mA
		_	_	45	mA	f = 8.4 MHz, lout = 0 mA
Input low voltage	V _{IL}	-0.3*1	_	0.8	V	
Input high voltage	V _{IH}	2.2	_	V _{CC} + 1.0*2	V	
Output low voltage	V _{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage	V_{OH}	2.4	_	_	V	I _{OH} = -1 mA
		V _{cc} - 0.7		_	V	I _{OH} = -0.1 mA

Notes: 1. $V_{IL} \min = -1.0 \text{ V}$ for pulse width $\leq 50 \text{ ns}$.

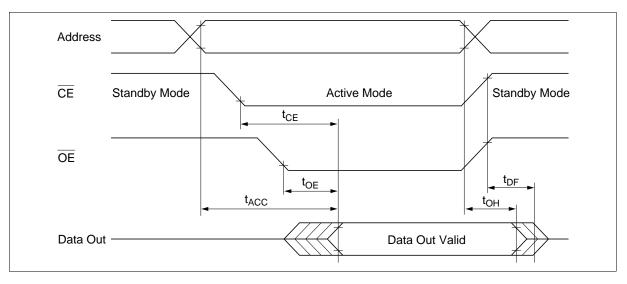
2. V_{IH} max = V_{CC} +1.5 V for pulse width \leq 20 ns. If V_{IH} is over the specified maximum value, read operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{CC}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Test Conditions

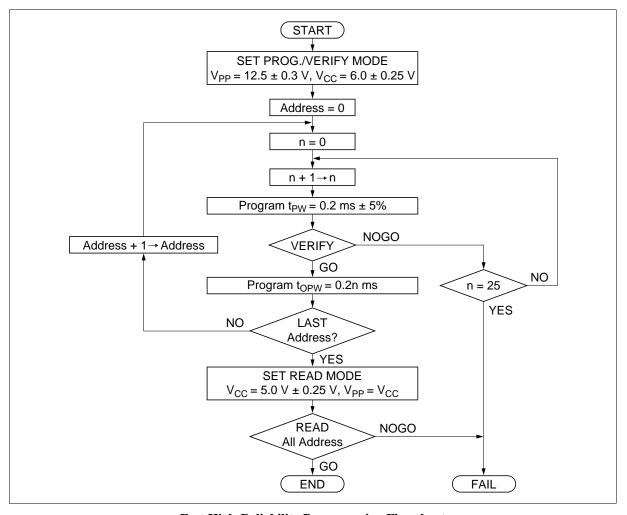
Input pulse levels: 0.45 V to 2.4 V
Input rise and fall time: ≤ 20 ns
Output load: 1 TTL Gate +100 pF

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

		C101A		P/ATT P		7C101 7C301		-		
	-12		-15		-20		-25		- '	
I	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Те

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Address to output delay	t _{ACC}	_	120	_	150	_	200	_	250	ns	$\overline{CE} = \overline{OE} = V_{IL}$
CE to output delay	t _{CE}	_	120	_	150	_	200	_	250	ns	OE = V _{IL}
OE to output delay	t _{OE}	_	60	_	70	_	70	_	100	ns	CE = V _{IL}
OE high to output float	t _{DF}	0	50	0	50	0	50	0	60	ns	CE = V _{IL}
Address to output hold	t _{oh}	0	_	0	_	0	_	0	_	ns	$\overline{CE} = \overline{OE} = V_{IL}$


Note: t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Fast High-Reliability Programming

This device can be applied the programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Programming Flowchart

DC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{CC}
V _{PP} supply current	I _{PP}	_	_	40	mA	CE = PGM = V _{IL}
Operating V _{cc} current	I _{cc}	_	_	30	mA	
Input low level	V _{IL}	-0.1* ⁵	_	0.8	V	
Input high level	V _{IH}	2.2	_	V _{cc} + 0.5	5*6 V	
Output low voltage during verify	V _{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V _{OH}	2.4	_	_	V	$I_{OH} = -400 \mu\text{A}$

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while $V_{pp} = 12.5 \text{ V}$.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.
- 6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

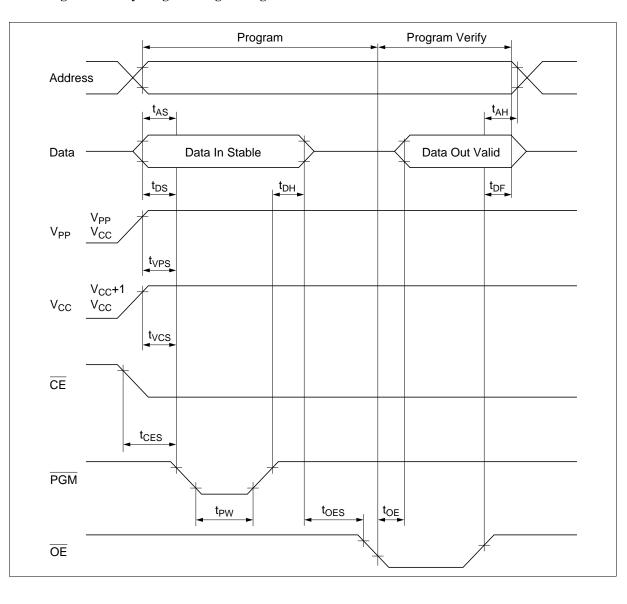
AC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Test Conditions

• Input pulse levels: 0.45 V to 2.4 V

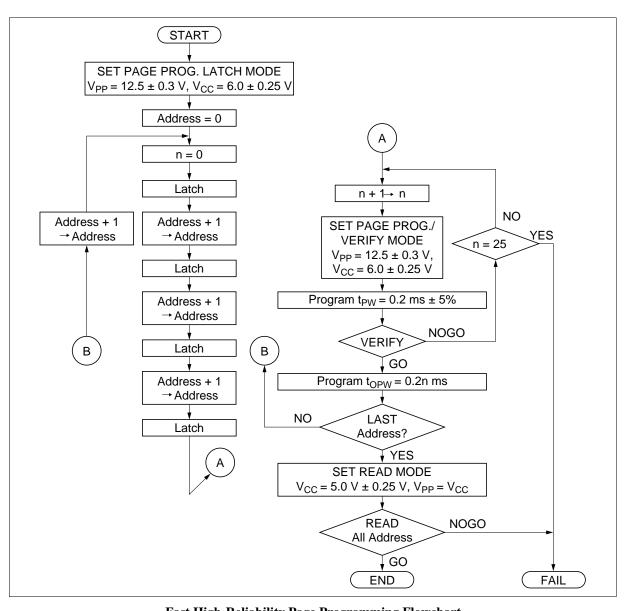
• Input rise and fall time: $\leq 20 \text{ ns}$

 \bullet Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	$t_{\scriptscriptstyle DH}$	2	_	_	μs	
OE to output float delay	t _{DF} *1	0	_	130	ns	
V _{PP} setup time	t_{VPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
PGM initial programming pulse width	t _{PW}	0.19	0.2	0.21	ms	
PGM overprogramming pulse width	$t_{OPW}^{}^{*2}}$	0.19	_	5.25	ms	
CE setup time	t _{CES}	2	_	_	μs	
Data valid from OE	t _{oe}	0	_	150	ns	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.


2. Refer to the programming flowchart for t_{OPW}.

Fast High-Reliability Programming Timing Waveform

Fast High-Reliability Page Programming

This device can be applied the high performance page programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Page Programming Flowchart

DC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{CC}
V _{PP} supply current	I _{PP}	_	_	50	mA	$\overline{CE} = \overline{OE} = V_{IH}, \overline{PGM} = V_{IL}$
Operating V _{cc} current	I _{cc}	_	_	30	mA	
Input low level	V _{IL}	-0.1* ⁵	_	0.8	V	
Input high level	V_{IH}	2.2	_	V _{cc} + 0.5* ⁶	V	
Output low voltage during verify	V _{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V _{OH}	2.4	_	_	V	$I_{OH} = -400 \mu A$

Notes: 1. V_{cc} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while $V_{PP} = 12.5 \text{ V}$.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns
- 6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

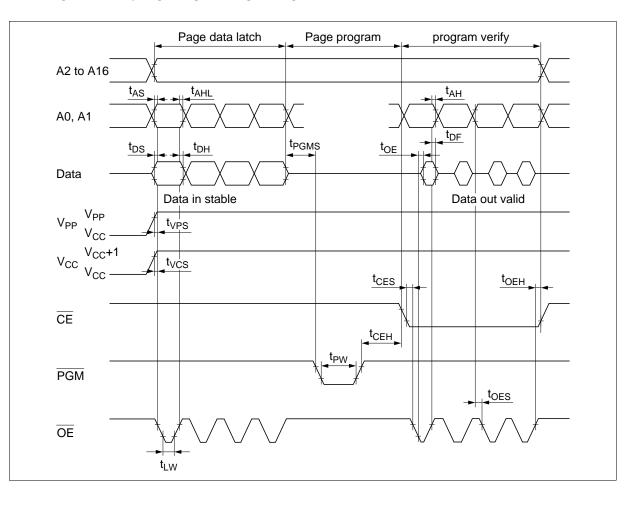
AC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V)

Test Conditions

• Input pulse levels: 0.45 V to 2.4 V

• Input rise and fall time: $\leq 20 \text{ ns}$

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit
Address setup time	t _{AS}	2	_	_	μs
OE setup time	t _{oes}	2	_	_	μs
Data setup time	t _{DS}	2	_	_	μs
Address hold time	t _{AH}	0	_	_	μs
	\mathbf{t}_{AHL}	2	_	_	μs
Data hold time	t_{\scriptscriptstyleDH}	2	_	_	μs
OE to output float delay	t_{DF}^{*1}	0	_	130	ns
V _{PP} setup time	t_{VPS}	2	_	_	μs
V _{cc} setup time	\mathbf{t}_{VCS}	2	_	_	μs
PGM initial programming pulse width	t_{PW}	0.19	0.2	0.21	ms
PGM overprogramming pulse width	$t_{OPW}^{}^{\star 2}}$	0.19	_	5.25	ms
CE setup time	t _{CES}	2	_	_	μs
Data valid from OE	t _{oe}	0	_	150	ns
OE pulse width during data latch	$\mathbf{t}_{\scriptscriptstyleLW}$	1	_	_	μs
PGM setup time	t _{PGMS}	2	_	_	μs
CE hold time	t _{CEH}	2			μs
OE hold time	t _{OEH}	2		_	μs

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

2. Refer to the programming flowchart for t_{OPW} .

Fast High-Reliability Page Programming Timing Waveform

Mode Description

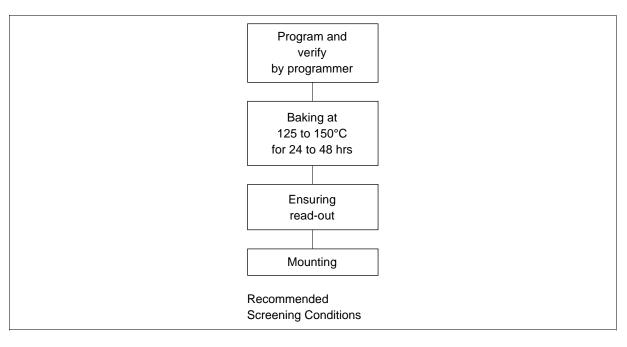
Device Identifier Mode

The device identifier mode allows the reading out of binary codes that identify manufacturer and type of device, from outputs of OTPROM. By this mode, the device will be automatically matched its own corresponding programming algorithm, using programming equipment.

HN27C101AP/AFP/ATT Identifier Code

Identifier	A0 (12)	A9 (26)	I/O7 (21)	I/O6 (20)	I/O5 (19)	I/O4 (18)	I/O3 (17)	I/O2 (15)	I/O1 (14)	I/O0 (13)	Hex Data
Manufacturer code	V _{IL}	V_{H}	0	0	0	0	0	1	1	1	07
Device code	V _{IH}	V_{H}	0	0	1	1	1	0	0	0	38

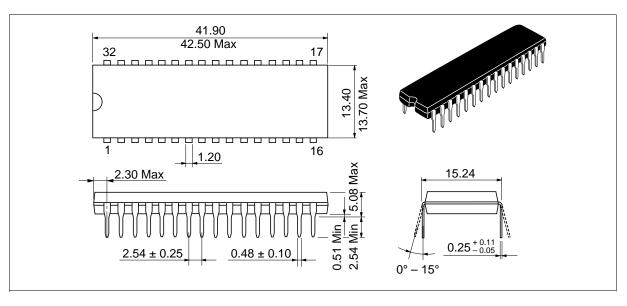
HN27C301AP/AFP Identifier Code


Identifier	A0 (12)	A9 (26)	I/O7 (21)	I/O6 (20)	I/O5 (19)	I/O4 (18)		I/O2 (15)	I/O1 (14)	I/O0 (13)	Hex Data
Manufacturer code	V_{IL}	V_{H}	0	0	0	0	0	1	1	1	07
Device code	V _{IH}	V _H	1	0	1	1	1	0	0	1	B9

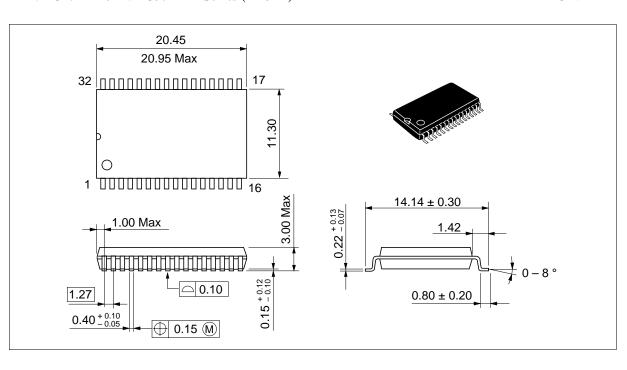
Notes: 1. $V_H = 12.0 \text{ V} \pm 0.5 \text{ V}$

2. A1 - A8, A10 - A16, \overline{CE} , $\overline{OE} = V_{IL}$, $\overline{PGM} = V_{IH}$

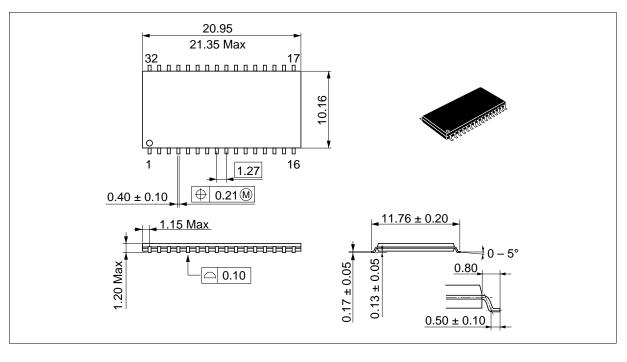
Recommended Screening Conditions


Before mounting, please make the screening (baking without bias) shown in the right.

Package Dimensions


HN27C101AP/HN27C301AP Series (DP-32)

Unit: mm


HN27C101AFP/HN27C301AFP Series (FP-32D)

Unit: mm

HN27C101ATT Series (TTP-32D)

Unit: mm

